Kandid, a genetic art project kandid.org

Extending Kandid

0. TKQNAIA. ¢ttt ettt et e bt e et e et eeht e et e e bt e e bt e e bt e bt e enbeeeateenteas 1
0.2Kandid 0N the NEt......ccocueiiiiiiiiiiieteee ettt ettt e e e 1
0.3Extending Kandid..........cccooriiiiiiiiiiieee et e e s e 2
0.4Steps for extending Kandid............coocuiiiiiiiiiiiiiiie e 2
1.Adding a Simple NEW POPULAtION.eiiiiiiiiiiiiiiiie ettt et e e 2
1.1The Shape @XAMPIE.......ccoiuiiiiiiiiiiiieeiee ettt et e et e e ete e e e baeesnbaeessaeesabaeesnaneesnnnas 2
1.1.1Data MOAEL......oooiiiiiiiiiie ettt e 2
Modelling the PATAIMELETS.cccvviiirriieeeriieeeieeeeieeeeritee ettt eesteeesbeeesabeeeesaeeesssaeesnnseeesnneeas 2

AULO ZENETALING COUE .uvvieniiiieiiieeiiee et e rtee et ee et ee st e e sttt e et e e eateeeabeeesabeessaeesareeseaseesnnne 4
1.1.2Image CalCUIAtION.ciiiiiieiiiie ettt e et e e e e et eeesnbaeesnnnneeennnneeennsneeesd 6
COAINE ettt ettt ettt ettt e e ettt e e et e e e s atb e e sabtee s aaeeesnnbeesensbeeesnseeesnnnaeeensneesnned 6

L. 1.3 CAtALOGUE. ...ttt ettt ettt ettt et e eh e et e et e st eeenareeean 9
AddING the NEW LYPE...ceeeiieiiieeiieeeiteeette e eteertee et ee sttt e e steeessteeesbeeeseeesssaeessseeessseesseeennses 9
1.1.4Completing the shape calCulation.............covuiiiiiiiiiiiiiiieeeeee e 10
FAllINg the SRAPES......coiiiiiiiiieee ettt e et e et e e eaae e e s 10
2.Calculations for COlOUINE PIXEIS.....ccoruiiiiiiiiiiieiitie ettt e s 11
2 1 01T eq w1 o Pl S TSR P PR 11
2.1 TIFS data MOAEL...ccoouiviiiiiiiie ittt e 11
2.1.2IFS CalCULAtION.ciiuiiiiiiiieeiie ettt ettt et et e s e bt e st e e bt e e sabeesbeeeaaeeean 11
2.1.3Incremental Image CalCulation............eoiiiiiiiiiiiiiiiecee e 12
2.1.45UCCeSSIVE TEIINEIMENLS.eeiiiiiiiiiiiie ettt e ettt e et e e st eeeeabeeeeeaeee 12
2.1.5V0roini CalCUIALION.coviiiiiiieiiitie ettt et et e e e 12
2.2Using external IMage ZENETALOTS.ceeruttirririieriieeeiitee ettt e eite e ettt e e riteeesbteesabaeesaneeesnreesnbeeanns 12

B SOTIWATE TOOIS. c...eeneiieiieeiee ettt sttt ettt s e st e bt e bt e b e beenbeenanees 14
B TREQUITE TOOIS.......eeiiiiiiieiiiee et ettt st et san e sane e e en 14
3.2RecomMmENdEd tOOIS.ccouiiriiiiiiiiiieiteete ettt e 14

This is a small tutorial about extending Kandid with a new types of image
producing calculations.

0.1 Kandid

Kandid is a system to evolve graphics. Graphics, in Kandid, is not drawn by hand. Instead new
forms can be found using genetic algorithms. To achieve this aim Kandid simulates evolution
using sexual reproduction and populations. But there is no fitness function in side the program.
Only the user decide which images are interesting.

0.2 Kandid on the Net
Kandid homepage

http://kandid.sourceforge.net/

Kandid, a genetic art project kandid.org

0.3 Extending Kandid

Kandid has two different types of image calculations. In the simpler case the image rendering
code is written by an human and only the parameters, feeding this algorithm, comes from a
genetic system. This is discussed in this paper.

In other types of calculation the rendering code is evolved with a genetic system too. This will be
discussed in an extra paper.

0.4 Steps for extending Kandid
- Define the chromosomes data model in the soup.xsd schema file.

« Run the code generator to produce genetic operators, persistence and other helper routines
for the new chromosome type.

- Subclass one oft the calculation base classes and implement the image renderer.
- Add the new calculation type to the catalog.xml file.

- Recompile and restart Kandid

1.Adding a simple new Population

1.1 The shape example

This example population produces images with coloured circles. The circles will overlap, but they
are transparent.

1.1.1 Data model

An image population consists of two parts. Part one is the data model with all the parameters that
should be evolved. The second part is the calculation of the images based on the parameters.
While the image calculation is hand coded for every type of calculation the parameter evolver
should be implemented in a more general way.

Modelling the parameters

The core of the parameter evolving system is a data model written in XML schema. It is located
in file kandid/soup/schema/soup.xsd. This is the point where we will start with the example. The
only shapes we have at the moment are circles. All of this shapes have a colour, a transparency,
a dimension and a position. In one image is more than one shape that should be painted on a
solid filled background.

For modelling the shaped we will use inheritance. Shape is an gene in our model with a colour
attribute and a position in 2D coordinate space.

Kandid, a genetic art project kandid.org

<xsd:complexType name="abstractTutorialShapeGene"™
<xsd:complexContent>
<xsd:extension base="geneType">
<xsd:sequence>
<xsd:element name="color" type="colorGene"/>
<xsd:element name="transparency" type="normalizedGene"/>
<xsd:element name="x" type="symmetricGene"/>
<xsd:element name="y" type="symmetricGene"/>
</xsd:sequence>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

The <xsd:extension base="geneType"> is mandatory for all genes. This tag told Kandid to handle shape as a
gene. The attribute are modelled with the <xsd:element/> tags. In this case types of all attributes are based on
predefined types. This predefined types have a given value range, mutating and random seed behaviour. Type
colorGene has red, green, blue components, normalizedGene stands for values between 0.0 and 1.0 and
symmerticGene stands for the range -1.0 to +1.0.

Now we can define our visible shape type, the circle.

<xsd:complexType name="tutorialCircleGene">
<xsd:complexContent>
<xsd:extension base="abstractTutorialShapeGene">
<xsd:sequence>
<xsd:element name="radius" type="normalizedGene"/>
</xsd:sequence>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

TutorialCircleGene inherit from AbstractTutorialShapeGene adding its own attribute, the radius.

What we need is an list of of circles and not al list of abstract shapes. We can do this with
minOccurs and maxQOccurs attributes of XML Schema.

Every type of calculation needs one chromosome defining the parameter set. We are nearly ready
expanding the core of the data model. We model the list of shapes that we will be later painted
on a non transparent background.

<xsd:complexType name="tutorialShapeChromosome">
<xsd:complexContent>
<xsd:extension base="chromosomeType">
<xsd:sequence>
<xsd:element name="allShapes" type="tutorialCircleGene" minOccurs="2" maxOccurs="100"/>
<xsd:element name="color" type="colorGene"/>
</xsd:sequence>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

Setting both minOccurs and maxOccurs told Kandid that a list of genes is required. The
<xsd:choice/> tag means that circles and rectangles are an alternative.

At the end of the data modelling some technical code must be added to the soup.xsd schema.
You must add an definition for the new image type.

Kandid, a genetic art project kandid.org

<xsd:.complexType name="shapelmage">
<xsd:complexContent>
<xsd:extension base="imageType">
<xsd:sequence>
<xsd:element name="chromosome" type="shapeChromosome"/>
</xsd:sequence>
<xsd:attribute name="version" type="xsd:string" use="required" fixed="0.3.2"/>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

And you had to expand two tags at the beginning of the file to insert your image type to the other
population types. Data type Entity is for storing single chromosomes. This is used when exporting
images and for images in the pool.

<xsd:complexType name="entity Type">
<xsd:choice>

<xsd£élement name="shapelmage" type="shapelmage"/>
</xsd:choice>

</xsd :66m plexType>

Data type Population is for storing whole populations.

<xsd:element name="population" type="populationType"/>

<xsd:complexType name="populationType">
<xsd:choice>

<xsd.:.élement name="shape" type="shapelmage" maxOccurs="unbounded"/>
</xsd:choice>

</xsd :66m plexType>

Auto generating code

But why all this abstract meta data definitions? What is the advantage? Dependent on your data
model you need a lot of stupid code. The parameters should be stored and loaded from file,
should be used in an drag and drop operation, the user wants to see or edit the values,
chromosomes must be initialised with random values, or mutated or merged together... And all of
this code can be generated automatically from the schema. You must only start the shell script ./
schema to produce this code. If you are working with an IDE you had to refresh the project,
because an IDE like Eclipse had to reimport the changes.

There are two slightly different pieces of generated code. Code for storing, loading and schema
verification is generated with the Java Architecture for XML Binding (JAXB). Code specific to
genetics algorithm is generated with XSLT. There are some XSL files to produce Java source code
from the soup.xsd schema. The decision made in this XSL file are often based on naming
conventions. The name of genes or chromosomes must always end with the phrase “Gene” or
“Chromosome” . For example type="colorGene".

Here is an example of an piece of auto generated code for initializing a chromosome with a list of
shapes. It generates a list with at least 2 and not more than 100 rectangles or circles.

Kandid, a genetic art project kandid.org

public void randomize (TutorialShapeChromosomeImpl aChromosome)
throws JAXBException {

{
java.util.List list = aChromosome.getAllShapes|():;

list.clear();
int newlLength = kandid.util.CentralRandomizer.getInt (2, 100);

while (newLength > 0) {
TutorialCircleGene aAllShapes = objectFactory.createTutorialCircleGene();
randomize (aAllShapes, aChromosome, 1);
list.add(aAllShapes) ;
--newLength;
}
}

ColorGene aColor = objectFactory.createColorGene () ;
randomize (aColor, aChromosome, 1);
aChromosome.setColor (aColor) ;

}

This generated code is triggered by the following tags:

<xsd:sequence>
<xsd:element name="allShapes" type="tutorialCircleGene" minOccurs="2" maxOccurs="100"/>

<xsd:element name="color" type="colorGene"/>
</xsd:sequence>

Kandid, a genetic art project kandid.org

1.1.2 Image calculation

Different Calculation classes can be used as a base for painting shape image.

Iiﬂ Hierarchy : Calculation

—~ @ Object
= ¥3" Calculation
= @ pixelCalculation
I @* LcaCalculation
I @" pixelBridgeCalculation
= @" RefinementCalculation
@ scalarExpressionCalculation
@ wvectorExpressionCalculation
b @"voroniCalculationBase
b @"* worldcalculation
= @" VectorCalculation
@ LsyscCalculation

€ TutorialShapecCalculation

@ TutorialshapeCalculation

o ready

@« calculate(boolean, String)
@ ..getBackgroundColor()
@.getPercent()

@ . getReady()

PixelCalculation is the base class for calculation for raster graphics. The calculation has to
evaluate the colour of every pixel. Non of the real calculation is directly derived from this base
class.

RefinementCalculation is used for calculations able for producing low resolution previews. This
will give a faster feedback to the user. The Voroni calculation is such a kind of calculation.

PixelBridgeCalculation is used when the calculation of the image is done outside of Kandid. This is
at the moment in an experimental state.

VectorCalculation is for vector graphics. The image must be constructed with
java.awt.Graphics2D methods. For screen and bitmap export the draw and fill methods produces
bitmap data. This is done by the AWT graphics engine. With the help of the Batik packages from
apache.org the java.awt.Graphics2D methods can be mapped to SVG.

Coding

The shape example sounds like vector graphics. We will create the new class
TutorialShapeCalculation derived from VectorCalculation in the new
kandid.calculation.tutorial.shape package . This can be done with Eclipse very easy.
Eclipse overwrites the abstract methods from VectorCalculation with stubs.

package kandid.calculation.tutorial.shape;

import kandid.calculation.VectorCalculation;

Kandid, a genetic art project kandid.org

/**

* @author thomas jourdan
*

*/
public class TutorialShapeCalculation extends VectorCalculation {

/* (non-Javadoc)
* @see kandid.calculation.Calculation#calculate (boolean, java.lang.String)
*/

public void calculate (boolean preview, String exportFilename) {
// TODO Auto-generated method stub

}

/* (non-Javadoc)
* (@see kandid.calculation.Calculationf#getPercent ()
*/
public int getPercent () {
// TODO Auto-generated method stub
return O;

}

/* (non-Javadoc)
* @see kandid.calculation.Calculation#getReady ()
*/
public boolean getReady () {
// TODO Auto-generated method stub
return false;

}

/* (non-Javadoc)
* @see kandid.calculation.Calculation#getBackgroundColor ()
*/
public int getBackgroundColor () {
// TODO Auto-generated method stub
return 0;

Two of this method stubs can be fixed in a simple way. We don't need the percentage display and
we set the default background to black.

public int getPercent () {
// =1 disables the percentage display, that's Ok for the first step.
return -1;

}

/* (non-Javadoc)
* (@see kandid.calculation.Calculationf#getBackgroundColor ()
*/
public int getBackgroundColor () {
// 0 means black background.
return 0;

For an first step we will simplify the calculation. We will only paint the background colour
provided from the parameter set. After filling the background the calculation is ready. This is
signalled with a getReady() returning true.

Kandid, a genetic art project kandid.org

public void calculate(boolean preview, String exportFilename) {
// get chromosome
TutorialShapeChromosome shapeChromosome =
(TutorialShapeChromosome) chromosome;
// initialize transformation without border
initTransformation(0.0);
// get the background color and fill the whole canvas
Color background = new Color (shapeChromosome.getColor ().getRed(),
shapeChromosome.getColor () .getGreen(),
shapeChromosome.getColor () .getBlue());
g2d.setColor (background) ;
g2d.fillRect (0, 0, canvasSize.width, canvasSize.height);

// image is complete
ready = true;

}

public boolean getReady () {
return ready;

}

The chromosome is a member variable located in a base class. We had to down cast it to our
specific chromosome type. Then the chromosomes parameters can be accessed and must be
mapped to Graphics2D method calls.

Kandid, a genetic art project kandid.org

1.1.3 Catalogue

Adding the new type

Kandid reads an catalogue located in kandid/catalog/catalog.xml. Before the new calculation can
be used it must be listed in this catalog.

<calculation name="TutorialShape">
<model>
<calculationClass>kandid.calculation.tutorial.shape. TutorialShapeCalculation</calculationClass>
<coloratorClass>kandid.colorator. RGBColorator</coloratorClass>
</model>
<icon url="/img/typeShapeTutorial.png" gridX="2" gridY="3"/>
<tooltip>Tutorial example. How to add a new type of population to Kandid</tooltip>
</calculation>

There are two rules: The name in the <calculation name="TutorialShape"> tag comes from the name of
the image defined earlier in the soup.xsd shema. The postfix “Image” must be removed and the first letter must
be capitalized. <xsd:complexType name="tutorialShapelmage"> becomes <calculation name="TutorialShape™>
Second you had to provide an image icon with an 64x64 dimension and place it with the gridX and grodY
attribute. This image should reside in the img folder.

Now its possible to start Kandid the first time with the new calculation.

B
&
5
L
Ll
=
=

Kandid, a genetic art project kandid.org

1.1.4 Completing the shape calculation

Filling the shapes

Kandid is now able to display the generated images in the population frame. With this visual
feedback it is easier to complete the shape calculation. As we modelled in the schema the shapes
come from a list having colour, transparency, dimension and location attributes.

public void calculate(boolean preview, String exportFilename) {
// get chromosome
TutorialShapeChromosome shapeChromosome =
(TutorialShapeChromosome) chromosome;
// initialize transformation without border
initTransformation (0.0);
// get the background color and fill the whole canvas
Color background =
new Color (shapeChromosome.getColor () .getRed(),
shapeChromosome.getColor () .getGreen (),
shapeChromosome.getColor () .getBlue())
g2d.setColor (background) ;
g2d.fillRect (0, 0, canvasSize.width, canvasSize.height);

’

List allShapes = shapeChromosome.getAllShapes () ;
for (Iterator shapelIter = allShapes.iterator(); shapelter.hasNext();) {
Object element = shapelter.next();
if (element instanceof TutorialCircleGene) {

TutorialCircleGene shape = (TutorialCircleGene) element;

// get the fill color

Color fillcolor = new Color (shape.getColor () .getRed(),
shape.getColor () .getGreen(),
shape.getColor () .getBlue());

g2d.setColor (fillcolor);

// get transparence and map to Graphic2D alpha composite class

float alpha = (float) shape.getTransparency () .getValue ();

AlphaComposite ac =

AlphaComposite.getInstance (AlphaComposite.SRC_OVER,alpha) ;

g2d.setComposite (ac) ;

// get position and transform

transform(shape.getX () .getValue (), shape.getY().getValue());

int x1 = xp;

int yl1 = yp;

// transform the radius and fill it

transform(0.5*shape.getRadius () .getValue (),

0.5*shape.getRadius () .getValue()) ;

int rl = xp;

// fill circle

gz2d.fillOval (x1+rl, yl+rl, rl, rl);

Kandid, a genetic art project kandid.org

2.Calculations for colouring pixels

Some types of calculation formulas produces a sequence of points in 2D space and a colour
information for each of this points. Iterated function systems (IFS) are an good example.

2.1 Integrating IFS
2.1.1 IFS data model

An affine Iterated Function System consist of an list of transformation matrices. Each matrix has
six values. XML schema in soup.xsd models this.

<xsd:complexType name="affineTransformationGene">
<xsd:complexContent>
<xsd:extension base="geneType">
<xsd:sequence>
<xsd:element name="ta" type="symmetricGene'"/>
<xsd:element name="tb" type="symmetricGene"/>
<xsd:element name="tc" type="symmetricGene"/>
<xsd:element name="td" type="symmetricGene"/>
<xsd:element name="te" type="symmetricGene"/>
<xsd:element name="tf" type="symmetricGene"/>
</xsd:sequence>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

<xsd:complexType name="affinelfsChromosome">
<xsd:complexContent>
<xsd:extension base="chromosomeType">
<xsd:sequence>
<xsd:element name="seed" type="seedGene"/>
<xsd:element name="affineTransformation" type="affine TransformationGene"
minOccurs="2" maxOccurs="8"/>
</xsd:sequence>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

2.1.2 IFS Calculation

Looking a little bit deeper to pixel based computer graphics we see that the painting canvas has
a fixed amount of discrete pixels. For example 265 in each direction. But the IFS produces points
in a 2D areas with unknown bounds. Its is necessary to make one test run for every new image to
calculate the bounds. Then you can set up the transformations mapping from IFS coordinates to
graphic device coordinates. Every iterated point produced by the IFS must be transformed. This
things are done in class In this class WorldCalculation. There are two member variables xw an yw
representing the world coordinates. The coordinates produced during one iteration must be
assigned to this variables. Then the method setWPixel(color) colours the appropriate pixel in the
graphics device. This is not what you expected in object oriented programming. The design of
this classes is influenced from performance requirements.

double x2 = xw * mTa[tx] + yw * mTb[tx] + mTe[tx];
double y2 = xw * mTc[tx] + yw * mTd[tx] + mTf[tx];
XW = X2;
yw = y2;

setWPixel (pointColor) ;

For a real example please see class WorldCalculation, IterationCalculation and

Kandid, a genetic art project kandid.org

AffinelfsCalculation.

2.1.3 Incremental image calculation

Even on fast computers most of the calculations implemented in Kandid needs a lot of time. The
user may be more satisfied if it is possible to display preliminary images while the calculation is
not finished. This is implemented in the following way. The Kandid framework calls the calculate()
method of the specifics Calculation class. In side of this method some pixels are set to the
calculated colours. But the calculation routine can be exited long before all iterations are ready
and the Kandid framework paints the preliminary buffered image. As long getReady() returns
false the calculation() Method will be called again from the framework to calculate the next
round.

2.1.4 Successive refinements

Some types of calculations works like mathematical functions, where a result is produced
dependent on the input parameters. There are no inner states and the same parameter values
produce always the same result. Some of this formulas take a 2D coordinate and produce an
colour value. This behaviour can be used for quick previews.

2.1.5 Voroini calculation

In a Vorni diagram each point in 2D space is coloured dependant of his distance to some control
point. For the final image you had to calculate every pixel. But for an quick preview you can make
greater steps reducing the calculation cost. But you had to fill rectangular areas instead of pixels.
Class RefinementCalculation did this job in an intelligent way. It makes several runs decreasing
the stepping distance from run to run until it comes to the final pixel by pixel rendering.

For a real example please see class RefinementCalculation and VoroniBaseCalculation.

2.2 Using external image generators

There are good image generators available to produce excellent images. It may be a solution to

port there code to Java and the Kandid software architecture. But for exanple the Persistence of
Vision ray tracer is a great thing developed over the last 10 years. A better approach was to use

POV ray as it is.

Kandid can be used as an wrapper for image generation programs. These external programs must
be able to read the parameters from a file or command line and produce the resulting image to
an other file or to the stdout stream. It is not necessary that the user edits the parameter files by
hand or starts the program manually. From the users view there is no distinction between build in
and external calculations. But for programmers there are a lot of difference between internal
calculation and external renderers. Normally these programs are written in C or C++ and
compiled. Kandid has no access to there internal states and functions. This is the reason why
Kandid produces in a first step the input parameter file, starts then external program invisible for
the user, waits until the output is generated and display in a last step this output inside a normal

Kandid, a genetic art project kandid.org

Kandid population frame.

A simple way collecting the output is giving the renderer an output file name and later loading
this file. But with this strategy no preview can be shown to the user. An other way is to establish
a data pipe between Kandid and the Renderer. This is done in the Kandid / POV ray bridge. Kandid
told POV ray to produce his image to the stdout stream. During the external rendering Kandid
reads the image back line by line in an parallel running thread.

For a real example please see class Bridge, FlameBridge and PovThingBridge. The Flame bridge
uses the simple file based coupling. At the moment Persistence of Vision ray tracer and Scott
Draves Flame IFS renderer is supported.

Kandid, a genetic art project kandid.org

3.Software tools

3.1 Required tools
J2SE 1.4.x SDK or JDK 5.0 from SUN Microsystems
http://java.sun.com/

Java Architecture for XML Binding from SUN Microsystems
You can download the Java Web Services Developer Pack 1.3
Only the JAXB component is needed.

http://java.sun.com/webservices/webservicespack.html

Xalan-Java version 2.4.x from Apache.org
Xalan is the XSLT processor generating all the helper code from the soup.xsd schema.
http://xml.apache.org/xalan-j/

Batik 1.5.x from Apache.org
Batik is only used for exporting Images based on class VectorCalculation.
http://xml.apache.org/batik/

3.2 Recommended tools
Eclipse 3.x
The recommended IDE is Eclipse 3.x

http://www.eclipse.org/

If you change Java source code inside Eclipse and store it then this code is automatically
compiled and Eclipse will try to update the code inside the running Kandid program. If this hot
updating fails you got an error message and you had to restart Kandid using the "debug" button.

JUnit 3.8.x
If you have Eclipse installed it is not necessary to download Junit. It is already a part of Eclipse.
http://junit.org/

Ant 1.5.x from Apache.org
http://jakarta.apache.org/ant/

Kandid, a genetic art project kandid.org

Schema expansion and packing the Kandid software is done with shell scripts executed on Linux
with bash. If you are developing under Windows you must convert the shell scripts to batch files.
A better way may be using ant from apache.org. At the moment only a few things are ported to
ant. One advantage of ant is that its platform independent.

If you want to build a new kandid.jar code archive go to folder /kandid/src and type ant on your
command line. Ant uses build.xml to compile a new version.

